Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38530347

ABSTRACT

A Gram-stain-negative, non-endospore-forming, motile, short rod-shaped strain, designated SYSU G07232T, was isolated from a hot spring microbial mat, sampled from Rehai National Park, Tengchong, Yunnan Province, south-western China. Strain SYSU G07232T grew at 25-50 °C (optimum, 37 °C), at pH 5.5-9.0 (optimum, pH 6.0) and tolerated NaCl concentrations up to 1.0 % (w/v). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SYSU G07232T showed closest genetic affinity with Chelatococcus daeguensis K106T. The genomic features and taxonomic status of this strain were determined through whole-genome sequencing and a polyphasic approach. The predominant quinone of this strain was Q-10. Major cellular fatty acids comprised C19 : 0 cyclo ω8c and summed feature 8. The whole-genome length of strain SYSU G07232T was 4.02 Mbp, and the DNA G+C content was 69.26 mol%. The average nucleotide identity (ANIm ≤84.85 % and ANIb ≤76.08  %) and digital DNA-DNA hybridization (≤ 21.9 %) values between strain SYSU G07232T and the reference species were lower than the threshold values recommended for distinguishing novel prokaryotic species. Thus, based on the provided phenotypic, phylogenetic, and genetic data, it is proposed that strain SYSU G07232T (=KCTC 8141T=GDMCC 1.4178T) be designated as representing a novel species within the genus Chelatococcus, named Chelatococcus albus sp. nov.


Subject(s)
Beijerinckiaceae , Hot Springs , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , China , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria
2.
Plant Physiol Biochem ; 208: 108456, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38417308

ABSTRACT

Bryophytes, known as poikilohydric plants, possess vegetative desiccation-tolerant (DT) ability to withstand water deficit stress. Consequently, they offer valuable genetic resources for enhancing resistance to water scarcity stress. In this research, we examined the physiological, phytohormonal, and transcriptomic changes in DT mosses Calohypnum plumiforme from two populations, with and without desiccation treatment. Comparative analysis revealed population differentiation at physiological, gene sequence, and expression levels. Under desiccation stress, the activities of superoxide dismutase (SOD) and peroxidase (POD) showed significant increases, along with elevation of soluble sugars and proteins, consistent with the transcriptome changes. Notable activation of the bypass pathway of JA biosynthesis suggested their roles in compensating for JA accumulation. Furthermore, our analysis revealed significant correlations among phytohormones and DEGs in their respective signaling pathway, indicating potential complex interplays of hormones in C plumiforme. Protein phosphatase 2C (PP2C) in the abscisic acid signaling pathway emerged as the pivotal hub in the phytohormone crosstalk regulation network. Overall, this study was one of the first comprehensive transcriptome analyses of moss C. plumiforme under slow desiccation rates, expanding our knowledge of bryophyte transcriptomes and shedding light on the gene regulatory network involved in response to desiccation, as well as the evolutionary processes of local adaptation across moss populations.


Subject(s)
Bryophyta , Bryopsida , Transcriptome/genetics , Droughts , Gene Expression Profiling , Plant Growth Regulators/metabolism , Bryopsida/genetics , Bryophyta/genetics , Stress, Physiological/genetics , Gene Expression Regulation, Plant
3.
Biology (Basel) ; 11(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36358314

ABSTRACT

Ceratophyllum L. is a cosmopolitan genus of perennial aquatic herbs that occur in quiet freshwaters. Fossils of this genus have been widely reported from the Northern Hemisphere, most of them occurring in the temperate zone. Here, we describe two species of fossil fruits discovered from subtropical areas of China. The fossil fruit discovered from the upper Eocene Huangniuling Formation of the Maoming Basin is designated as C. cf. muricatum Chamisso, and fruits discovered from the Miocene Erzitang Formation of the Guiping Basin are assigned to the extant species C. demersum L. The discovery of these two fossil species indicates that Ceratophyllum had spread to South China by the late Eocene and their distribution expanded in subtropical China during the Miocene.

4.
Ecol Evol ; 9(11): 6329-6341, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31236224

ABSTRACT

Plants are often repeatedly exposed to stresses during their lives and have a mechanism called stress imprinting that provides "memories" of stresses they experience and increases their ability to cope with later stresses. To test hypotheses that primed bryophytes can preserve their stress imprinting after 6 days of recovery and induce higher levels of osmolytes and ROS-scavenging activities upon later stress exposure, and there exist population-level differentiation in their desiccation defenses, we transplanted samples of two populations of each of two moss species, Hypnum plumaeforme and Pogonatum cirratum, in a nature reserve in southern China. After 16 months of acclimation, sets of each population were subjected to control, one-time desiccation stress, duplicated desiccation stress and cross-stress (low temperature stress followed by desiccation stress) treatments. Levels of oxidant enzymes, osmolytes, and phytohormones in the samples were then determined. The desiccation stress generally led to increases in activities or contents of superoxide dismutase, guaiacol peroxidase, catalase, proline, soluble sugars, soluble proteins, and stress hormones including abscisic acid (ABA), jasmonates (JA), and salicylic acid (SA), with differences between both species and populations. After a 6-day recovery period, contents of phytohormones (including ABA, JA, SA, and cytokinins) in stressed H. plumaeforme had substantially fallen toward control levels. The duplicated and cross-stress treatments generally led to further accumulation of proline, soluble sugars, and soluble proteins, with further increases in activities of antioxidant enzymes in some cases. Furthermore, significant differences between allochthonous and native populations were found in contents of malondialdehyde and osmolytes, as well as antioxidant enzyme activities. Our results confirm the hypotheses and highlight the importance of osmolytes in mosses' stress responses.

5.
Front Plant Sci ; 8: 1328, 2017.
Article in English | MEDLINE | ID: mdl-28824666

ABSTRACT

Global environmental changes are leading to an increase in localized abnormally low temperatures and increasing nitrogen (N) deposition is a phenomenon recognized worldwide. Both low temperature stress (LTS) and excess N induce oxidative stress in plants, and excess N also reduces their resistance to LTS. Mosses are primitive plants that are generally more sensitive to alterations in environmental factors than vascular species. To study the combined effects of N deposition and LTS on carbon (C) and N metabolism in moss, two moss species, Pogonatum cirratum subsp. fuscatum, and Hypnum plumaeforme, exposed to various concentrations of nitrate (KNO3) or ammonium (NH4Cl), were treated with or without LTS. C/N metabolism indices were then monitored, both immediately after the stress and after a short recovery period (10 days). LTS decreased the photosystem II (PSII) performance index and inhibited non-cyclic photophosphorylation, ribulose-1,5-bisphosphate carboxylase, and glutamine synthetase activities, indicating damage to PSII and reductions in C/N assimilation in these mosses. LTS did not affect cyclic photophosphorylation, sucrose synthase, sucrose-phosphate synthase, and NADP-isocitrate dehydrogenase activities, suggesting a certain level of energy and C skeleton generation were maintained in the mosses to combat LTS; however, LTS inhibited the activity of glycolate oxidase. As predicted, N supply increased the sensitivity of the mosses to LTS, resulting in greater damage to PSII and a sharper decrease in C/N assimilation. After the recovery period, the performance of PSII and C/N metabolism, which were inhibited by LTS increased significantly, and were generally higher than those of control samples not exposed to LTS, suggesting overcompensation effects; however, N application reduced the extent of compensation effects. Both C and N metabolism exhibited stronger compensation effects in H. plumaeforme than in P. cirratum subsp. fuscatum. The difference was especially pronounced after addition of N, indicating that H. plumaeforme may be more resilient to temperature and N variation, which could explain its wider distribution in the natural environment.

6.
Ecol Evol ; 6(21): 7596-7609, 2016 Nov.
Article in English | MEDLINE | ID: mdl-30128114

ABSTRACT

Nitrogen (N) deposition levels and frequencies of extreme drought events are increasing globally. In efforts to improve understanding of plants' responses to associated stresses, we have investigated responses of mosses to drought under elevated nitrogen conditions. More specifically, we exposed Pogonatum cirratum subsp. fuscatum and Hypnum plumaeforme to various nitrate (KNO 3) or ammonium (NH 4Cl) treatments, with and without water deficit stress and monitored indices related to carbon (C) and N metabolism both immediately after the stress and after a short recovery period. The results show that N application stimulated both C and N assimilation activities, including ribulose-1,5-bisphosphate carboxylase, glutamine synthetase/glutamate synthase (GS/GOGAT), and glutamate dehydrogenase (GDH) activities, while water deficit inhibited C and N assimilation. The mosses could resist stress caused by excess N and water deficit by increasing their photorespiration activity and proline (Pro) contents. However, N supply increased their sensitivity to water stress, causing sharper reductions in C and N assimilation rates, and further increases in photorespiration and Pro contents, indicating more serious oxidative or osmotic stress in the mosses. In addition, there were interspecific differences in N assimilation pathways, as the GS/GOGAT and GDH pathways were the preferentially used ammonium assimilation pathways in P. cirratum and H. plumaeforme when stressed, respectively. After rehydration, both mosses exhibited overcompensation effects for most C and N assimilation activities, but when supplied with N, the activities were generally restored to previous levels (or less), indicating that N supply reduced their ability to recover from water deficit stress. In conclusion, mosses can tolerate a certain degree of water deficit stress and possess some resilience to environmental fluctuations, but elevated N deposition reduces their tolerance and ability to recover.

7.
Chemosphere ; 97: 47-53, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24289981

ABSTRACT

Ten strains of Cu-tolerant bacteria with potential plant growth-promoting ability were isolated by selecting strains with the ability to use 1-aminocyclopropane-1-carboxylate as a sole nitrogen source (designated ACC-B) or fix nitrogen (designated FLN-B) originating from the rhizosphere of plants growing on copper tailings. All 10 strains proved to have intrinsic ability to produce indole acetic acid and siderophores, and most of them could mobilize insoluble phosphate. In addition, a greenhouse study showed that ACC-B, FLN-B and a mixture of both had similar, potent ability to stimulate growth of Pennisetum purpureum, Medicago sativa and Oenothera erythrosepala plants grown on sterilized tailings. For instance, above-ground biomass of P. purpureum was 278-357% greater after 60d growth on sterilized tailings in their presence. They could also significantly promote the growth of the plants grown on non-sterilized tailings, though the growth-promoting effects were much weaker. So, strategies for using of the plant growth-promoting bacteria in the practice of phytoremediation deserve further studies to get higher growth-promoting efficiency.


Subject(s)
Copper/toxicity , Environmental Restoration and Remediation/methods , Rhizosphere , Bacteria/drug effects , Bacteria/isolation & purification , Biodegradation, Environmental , Biomass , Indoleacetic Acids/metabolism , Mining , Nitrogen/metabolism , Plant Development/physiology , Plants/drug effects , Plants/microbiology , Siderophores/metabolism , Soil Microbiology , Sterilization
8.
Environ Pollut ; 172: 23-32, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22982550

ABSTRACT

We tested antioxidant responses of the green microalga Pseudokirchneriella subcapitata exposed to different concentrations of the three antibiotics erythromycin (ETM), ciprofloxacin (CPF) and sulfamethoxazole (SMZ). Measurements included the level of lipid peroxidation, the total antioxidative capacity and three major antioxidant mechanisms: the ascorbate-glutathione cycle, the xanthophyll cycle and the enzyme activities of catalase (CAT), superoxide dismutase (SOD), guaiacol glutathione peroxidase (GPX) and glutathione-S-transferase (GST). Three antibiotics significantly affect the antioxidant system of P. subcapitata, but in different ways the alga was more tolerant to CPF and SMZ exposures than to ETM exposure. ETM caused reductions in AsA and GSH biosynthesis, ascorbate-glutathione cycle, xanthophylls cycle and antioxidant enzyme activities. The toxicity of CPF seems to be mainly overcome via induction of the ascorbate-glutathione cycle and CAT, SOD and GPX activities, while the toxicity of SMZ on the photosynthetic apparatus is predominantly reduced by the xanthophyll cycle and GST activity.


Subject(s)
Anti-Bacterial Agents/toxicity , Chlorophyta/drug effects , Ciprofloxacin/toxicity , Erythromycin/toxicity , Sulfamethoxazole/toxicity , Water Pollutants, Chemical/toxicity , Catalase/metabolism , Chlorophyta/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Superoxide Dismutase/metabolism
9.
FEMS Microbiol Ecol ; 78(3): 439-50, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22066852

ABSTRACT

Microorganisms are important in soil development, inputs and biogeochemical cycling of nutrients and organic matter during early stages of ecosystem development, but little is known about their diversity, distribution, and function in relation to the chemical and physical changes associated with the progress of succession. In this study, we characterized the community structure and activity of nitrogen-fixing microbes during primary succession on a copper tailings. Terminal fragment length polymorphism (T-RFLP) and clone sequencing of nifH genes indicated that different N(2) -fixing communities developed under primary succession. Phylogenetic analysis revealed a diversity of nifH sequences that were mostly novel, and many of these could be assigned to the taxonomic divisions Proteobacteria, Cyanobacteria, and Firmicutes. Members of the Cyanobacteria, mostly affiliated with Nostocales or not closely related to any known organisms, were detected exclusively in the biological soil crusts and represented a substantial fraction of the respective diazotrophic communities. Quantitative PCR (and statistical analyses) revealed that, overall, copy number of nifH sequences increased with progressing succession and correlated with changes in physiochemical properties (including elementary elements such as carbon and nitrogen) and the recorded nitrogenase activities of the tailings. Our study provides an initial insight into the biodiversity and community structure evolution of N(2) -fixing microorganisms in ecological succession of mine tailings.


Subject(s)
Bacteria/growth & development , Biodiversity , Copper , Mining , Nitrogen Fixation , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Biomass , China , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/growth & development , DNA, Bacterial/genetics , Ecosystem , Gene Library , Nitrogen/analysis , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny , Polymorphism, Restriction Fragment Length , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/growth & development , Soil Pollutants/analysis
10.
Ecotoxicol Environ Saf ; 74(4): 1027-35, 2011 May.
Article in English | MEDLINE | ID: mdl-21353704

ABSTRACT

The effects of three antibiotics (erythromycin, ciprofloxacin and sulfamethoxazole) on photosynthesis process of Selenastrum capricornutum were investigated by determining a battery of parameters including photosynthetic rate, chlorophyll fluorescence, Hill reaction, and ribulose-1.5-bisphosphate carboxylase activity, etc. The results indicated that three antibiotics could significantly inhibit the physiological progress including primary photochemistry, electron transport, photophosphorylation and carbon assimilation. Erythromycin could induce acute toxic effects at the concentration of 0.06 mg L(-1), while the same results were exhibited for ciprofloxacin and sulfamethoxazole at higher than 1.0 mg L(-1). Erythromycin was considerably more toxic than ciprofloxacin and sulfamethoxazole and may pose a higher potential risk to the aquatic ecosystem. Some indices like chlorophyll fluorescence, Mg(2+)-ATPase activity and RuBPCase activity showed a high specificity and sensitivity to the exposure of erythromycin, and may be potentially used as candidate biomarkers for the exposure of the macrolide antibiotics.


Subject(s)
Anti-Bacterial Agents/toxicity , Chlorophyta/drug effects , Ciprofloxacin/toxicity , Erythromycin/toxicity , Photosynthesis/drug effects , Sulfamethoxazole/toxicity , Ca(2+) Mg(2+)-ATPase/metabolism , Chlorophyll/metabolism , Chlorophyta/metabolism , Chlorophyta/physiology , Electron Transport/drug effects , Fluorescence , Photophosphorylation/drug effects , Ribulose-Bisphosphate Carboxylase/metabolism , Water Pollutants, Chemical/toxicity
11.
J Environ Sci (China) ; 23(9): 1558-63, 2011.
Article in English | MEDLINE | ID: mdl-22432294

ABSTRACT

The effects of three types of antibiotics (erythromycin, ciprofloxacin and sulfamethoxazole) on the photosynthesis of freshwater algae, Selenastrum capricornutum Printz, were investigated by determining the growth rate, chloroplast pigments content, seven main precursors (including delta-aminolevulinic acid, porphobilinogen, uroporphyrinogen III, coproporphyrinogen III, protoporphyrin IX, Mg-proporphyrin IX and protochlorophyllide), and photosynthetic rate during chlorophyll biosynthesis. The antibiotics significantly decreased the growth rate, chlorophyll content, and photosynthetic rate. Erythromycin induced a decreasing effect at a concentration of 0.06 mg/L, while ciprofloxacin and sulfamethoxazole achieved the same results at concentrations higher than 1.5 mg/L. Only erythromycin significantly inhibited chlorophyll biosynthesis, which indicated that it was considerably more toxic to S. capricornutum than ciprofloxacin and sulfamethoxazole, and may pose a high potential risk to aquatic ecosystems.


Subject(s)
Anti-Bacterial Agents/toxicity , Chlorophyll/biosynthesis , Chlorophyta/drug effects , Chlorophyta/growth & development , Photosynthesis/drug effects , Toxicity Tests , Aquatic Organisms/drug effects , Aquatic Organisms/growth & development , Aquatic Organisms/metabolism , Bacterial Proteins/biosynthesis , Chlorophyta/metabolism , Chloroplasts/drug effects , Chloroplasts/metabolism , Kinetics , Risk
12.
Ying Yong Sheng Tai Xue Bao ; 17(9): 1671-6, 2006 Sep.
Article in Chinese | MEDLINE | ID: mdl-17147179

ABSTRACT

Guangzhou City is a rapidly urbanizing city in China, and a constructed city with holistic planning. By using the remote sensing images of 1985, 1990, 1995, 2000 and 2004, this paper studied the 20 years spatio-temporal changes of landscape pattern in Guangzhou, and analyzed the relationships between these changes and urbanization. The landscape and class-level pattern indices of whole Guangzhou City and its five districts were compared, and the results indicated that the landscape pattern in Guangzhou had an obvious spatio-temporal variation, and an increase of diversity and fractal dimension. The landscape structural complexity and fragmentation increased gradually from 1985 to 2004, and the variation intensity and tendency varied during four comparative stages 1985-1990, 1990-1995, 1995-2000, and 2000-2004. It was a rapid development period from 1985 to 1995 in Guangzhou. The represents of ten districts varied in their spatio-temporal landscape pattern, because of the different development progress and planning motive. The urbanization of Panyu was from 1990 to 2000, and its natural landscape was seriously disturbed by human activities. The represents of Conghua and Zengcheng districts were of integrative disturbance, and also, the urbanization process mainly took place during 1990-2000. In the city center consisting of 8 official constructed districts, the urbanization process happened earlier. In Huadu district, the landscape change revealed the frequent and severe human disturbance.


Subject(s)
City Planning , Ecosystem , Environment Design , Urbanization , China , Environmental Monitoring , Geographic Information Systems , Satellite Communications
SELECTION OF CITATIONS
SEARCH DETAIL
...